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Excessive exposure to toxic substances or chemicals in the environment
and various pathogens, including viruses and bacteria, is associated with
the onset of numerous brain abnormalities. Among them, pathogens,
specifically viruses, elicit persistent inflammation that plays a major role in
Alzheimer’s disease (AD) as well as dementia. AD is the most common
brain disorder that affects thought, speech, memory and ability to execute
daily routines. It is also manifested by progressive synaptic impairment and
neurodegeneration, which eventually leads to dementia following the
accumulation of Aβ and hyperphosphorylated Tau. Numerous factors
contribute to the pathogenesis of AD, including neuroinflammation
associated with pathogens, and specifically viruses. The human immunodefi-
ciency virus (HIV) is often linked with HIV-associated neurocognitive
disorders (HAND) following permeation through the blood–brain barrier
(BBB) and induction of persistent neuroinflammation. Further, HIV infections
also exhibited the ability to modulate numerous AD-associated factors such as
BBB regulators,members of stress-related pathways aswell as the amyloid and
Tau pathways that lead to the formation of amyloid plaques or neurofibrillary
tangles accumulation. Studies regarding the role of HIV in HAND and AD are
still in infancy, and potential link or mechanism between both is not yet estab-
lished. Thus, in the present article, we attempt to discuss various molecular
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mechanisms that contribute to the basic understanding of
the role of HIV-associated neuroinflammation in AD and
HAND. Further, using numerous growth factors and drugs,
we also present possible therapeutic strategies to curb the
neuroinflammatory changes and its associated sequels.

1. Introduction
Alzheimer’s disease (AD) is the most common neurological
complication, which mainly manifests progressive synaptic
impairment and neurodegeneration, following excessive forma-
tion and accumulation of amyloid-beta (Aβ) [1,2]. Aβ deposits
and hyperphosphorylated Tau (pTau), which interfere with
theneuronal organizationand their function, playaconsiderable
role inADprogression [3].Aβ-pathologyoften involves avariety
of signals that interrupt the homeostasis of neurons [4]. Cur-
rently, there are no definite data that can demonstrate a
causative relationship between neuronal damage following
human immunodeficiency virus (HIV) infections and the onset
of AD. However, available literature indicates that there are
some common factors and pathways modulated in HIV+ and
AD patients, thus suggestive of some similarities in these two
pathologies. Among numerous pathways, neuroinflammation
is shown closely related to these disorders and is considered
a crucial factor in their development and progression. It has
been reported that HIV regulatory proteins such as trans-
activator of transcription (Tat), envelope glycoprotein (Gp120),
viral protein R (Vpr) and negative factor (Nef) can directly
influence the central nervous system(CNS) andactivateneuroin-
flammatory pathways followed by neuronal injury and
dysfunction.Additionally, abnormalAβdeposition, a pathologi-
cal hallmark of AD has been reported in the individuals
suffering from HIV infection. Though the abnormalities associ-
ated with Aβ burden are more frequent in the AD brain than
HIV-infected individuals, it has been predominantly observed
in younger HIV-infected individuals [5,6].

Additionally, blood–brain barrier (BBB) dysfunction associ-
ated with HIV-1 infection is considered another cause of
neuroinflammation in AD. HIV infiltrates macrophages in the
CNS by crossing the BBB. The disrupted BBB in HIV patients
has been correlated with toxic Aβ aggregation and other
abnormalities resulting from a failure to sort out Aβ peptides
[7]. The virus-induced fusion of macrophages causes the for-
mation of giant cells and activation of astrocytes which
eventually causes injuries to different components of the
brain. The most affected areas are the subcortical structures
along with the limbic structures and basal ganglia, and the
verotoxins, including HIV proteins Gp41, Gp120, Tat, Vpr
and Nef, are accountable for such damage. HIV proteins also
may cause axonal damage and breakdown of white matter.
These injuries cause a decrease in volume of the brain structures
such as the caudate nucleus and basal ganglia, resulting in
atrophy of the brain volume and decline in cognition [8–10].

HIV also leads to HIV-associated neurocognitive disorders
(HAND), since it has a propensity to cross the BBB and cause
neuroinflammation [11–14]. HAND exhibits a spectrum of
cognitive deficits and typically affects information processing
speed, attention, learning and recall memory among other
cognitive functions [15]. HAND also has implications for
adherence to antiretroviral (ARV) treatment since it affects
prospective memory [16]. The exact route in which HIV
causes HAND is not yet well known, althoughHIV replication
(potential mechanisms) in the CNS, principally in the basal
ganglia and the adjacent subcortical white matter, is where
HIV infection is typically observed [17,18].

Among different cell types in the CNS, neurons have the
minimal susceptibility to HIV infection; thus the neuronal
impairment is reasonably speculated to result from an infec-
tion of neighbouring cells like microglia and macrophages,
which exert immune functions in the brain. These infected
cells result in the production of viral proteins that have the
ability to affect the synapse where communication between
neurons occurs. Also, the same viral proteins can induce unin-
fectedmacrophages, astrocytes andmicroglial cells that results
in the production of neurotoxins and a variety of inflam-
matory molecules, causing further damage to neurons [19].
Further, the inflammatory molecules and neurotoxins trigger
NMDA receptors and may cause additional damage to the
neurons following aggregation of calcium (Ca2+) in the neur-
ons which activate the formation of excessive free radicals
that contribute to oxidative damage. Among other factors,
methamphetamine use or abuse and co-infection with hepa-
titis C virus (HCV) may aggravate damage caused by HIV,
involving activation of macrophages and microglial cells [19].

Like amyloid plaques, neurofibrillary tangles (NFTs)
consisting of pTau also occur in people suffering from HIV,
particularly in aged individuals [20]. The elevated levels of
Tauhavebeen reported tooccurat earlierages in individuals suf-
fering from HIV than in healthy individuals. In HIV-infected
individuals, tau phosphorylation results from viral proteins
and pro-inflammatory cytokines that may impair amyloidosis
and precede the development of tau tangles [21]. Higher
expression of pTau in HIV individuals is also correlated with
ARV treatment [20]. Many comorbid conditions like chronic
substance abuse independent of the direct consequences of
HIValso lead toHIV transmission, responsiveness and cognitive
difficulties [22]. It is apparent that the linkage and causative
mechanisms between neuroinflammation, HIV-CNS neuroin-
fections, HAND and AD are still not completely understood.
Therefore, it is important to understand the fundamental mol-
ecular linkage among these pathologies, which may help in
understanding pathogenesis and developing therapeutics tar-
geting the pathogenesis events along with additional help in
diagnosis and prognosis. In the purview of this, herein we sum-
marize various underlying mechanisms which contribute to
HIV-associated neuroinflammation in HAND and AD using
synoptic tables and schemes. Additionally, numerous possible
therapeutic strategies are also presented, which may have the
potential to curb these complications and improve quality of life.
2. Human cells involved in HIV-associated
neuronal damage

HIV-1 interacts with different cell types (table 1) in the CNS,
including resident macrophages, neurons and astrocytes that
are reported to be involved in neuronal damage [12,26,27]. In
the CNS, resident macrophages, neurons and astrocytes are
the primary cell targets for HIV infection. In neurodegenerative
processes, the rolesofmacrophagesare crucialdue to their resist-
ance and sustenance against the cytopathic effects of HIV-1
[19,28–33]. In the CNS, there are four major types
of macrophages: choroid-plexus macrophages, meningeal
macrophages, perivascular macrophages and microglia
[23,34]. Out of these, perivascular macrophages and microglia



Table 1. The role of human cells in HIV-mediated neuronal damage [12,23–25].

neuronal cell associated effects
types of
infection

neuron enhances P53 expression restricted

enhances caspase activation

enhances intracellular Ca2+ release

microglia induces viral replication productive

provokes the release of viral proteins including, gp120, Tat and Vpr

increases neurotoxins production and also induces the expression of inflammatory mediators, such

as PDGF and QUIN

astrocyte enhances the production of neurotoxins restricted

downregulates the glutamate uptake

enhances BBB permeability

enhances intracellular release of glutamate and Ca2+

evokes the migration of monocytes into the brain

perivascular

macrophage

triggers viral replication productive

increases neurotoxins production and induces the expression of inflammatory mediators, such as

PDGF and QUIN

provokes the release of viral proteins including gp120, Tat and Vpr

oligodendrocyte enhances cellular apoptosis restricted

enhances intracellular Ca2+ levels

curtails myelin synthesis
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are believed to play a crucial role in neuronal damage following
the release of inflammatory cytokines [23]. Additionally, viral
proteins andneurotoxins also take part in the inflammatorypro-
cesses, provoking apoptosis and differentiation of astrocytes,
and impairing normal neurogenesis [12,24,25]. Further, micro-
glial resident cells play a fundamental role in the pathogenesis
ofHAND, leading todegenerative changes involvingnumerous
mechanisms. The glial cells upon HIV infection release factors
and toxins that aggravate neurons and astrocytes [12,35,36].
Astrocytes are neuroectodermal-derived cells, which support
the function and metabolism of neurons, ionic homeostasis
into the CNS, control of the state of the neuronal synapses by
the uptake of neurotransmitters and tissue repair. These are
the important components of the BBB and also regulate the
immune responses in the brain [37–39]. In addition, astrocytes
can facilitate the virus to persist in the CNS, which aids inmain-
taining low replication ofHIVand establishing a latent infection
[40]. Furthermore, in HIV-infected cells, viral factors may
enhance the release of other chemoattractants that recruitmicro-
glia and monocytes, resulting in aggravation of the neuronal
damage. Further, cellular factors like interleukin-1β (IL-1β),
interferon gamma (IFN-γ) or tumour necrosis factor alpha
(TNF-α) have the potential to activate and reactivate viral
replication in latently infected cells [19,41–45].
3. The direct and indirect mechanisms of
HIV induced-neuronal injury

3.1. Direct mechanisms
HIV-1 infects CNS involving three different mechanisms
(figure 1). In the first mechanism, the virus can directly infect
endothelial cells which express the chemokine receptors
(CCR3, CXCR4, DC-SIGN) engaged in HIV-1 entry [40,46].
In the second mechanism, the virus may directly cross the
impaired BBB due to increased permeability [45,47]. In the
third mechanism, according to the ‘Trojan horse’ hypothesis,
HIV-1 infected monocytes, perivascular macrophages and leu-
cocytes cross the BBB and release viral particles, which infect
resident cells like microglia and lead to persistent infection.
This one is believed to be the main mechanism for entry of
HIV into the brain, similar to other retroviruses and
lentiviruses [40].

Several observations advocate that cells like monocytes
are infected before leaving the bone marrow [48]. Particularly,
proviral DNA has been observed in these cells with no pres-
ence of viral proteins, which facilitated dissemination of the
HIV-1 infection [48,49]. An increase in a subset of monocytes,
including (CD14lowCD16high), plays a significant role in HIV-
1 infection [34,50–54]. These cells display intermediate traits
between the differentiated cells (dendritic cells and macro-
phage) and monocytes [51,53]. Owing to the lower activity
of the host restriction factors than the CD14highCD16low

cells, the cells are more liable to HIV replication following
eased permeation through BBB [49–52,54]. Furthermore,
viral proteins released into the CNS are believed to induce
BBB impairment by enhancing apoptosis and promoting
the invasion of HIV as well as other viruses in the different
components of the brain [45,55–57].
3.2. The indirect mechanisms
In addition to direct mechanisms, HIV-associated neurological
complications and neuroinflammation also involve indirect
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Figure 1. Schematic showing the entry mechanisms of HIV-1 into the CNS and its associated effects on neuronal cells that contribute to neuronal damage and
death. (1) HIV-1 can enter through infected T-cells or monocytes that migrate from the bloodstream to the CNS according to the ‘Trojan horse’ hypothesis. (2) The
increase in viral proteins and pro-inflammatory cytokines can impair the BBB (epithelial cells) permeability to make virus entry easier. Besides, using infected
epithelial cells, virus can reach the other side through a transcytosis process. (3) Reactive astrocytes can provoke epithelial cell apoptosis, leading to the modification
of BBB permeability through the release of viral proteins such as Tat. (4) The viral protein Tat has a direct effect on neurons and oligodendrocytes, which cause
increased damage and neuronal death. Finally, chronic activation of activated (5) microglia and (6) macrophages causes an increase in the levels of neurotoxins,
proinflammatory cytokines, RNA and ROS.
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mechanisms such as the infiltration of infected monocytes and
lymphocytes in the CNS, release of viral and cellular factors
from these infected cells, and infection of the resident cells
caused by viral particles released from infected cells or infiltrat-
ing into the CNS [58]. The cells (specifically T-cells and
monocytes) infected with HIV play a crucial role in the release
of pro-inflammatory cytokines that stimulate microglia and
astrocytes. The activated microglia and astrocytes along with
perivascular macrophages are engaged in releasing inflamma-
tory and neurotoxic mediators, including quinolinic acid
(QUIN), nitrogen oxide and platelet-derived growth factor
(PDGF), that further lead to neuronal dysfunction and death
[45,59].

Despite treatment with ARV agents, a previous study has
reported that the level of cytokines such as CCL3, IL-8, CCL2,
IFN-γ, CXCL10 and IL-6 was found to be higher in HIV-1
infected individuals in comparison with the uninfected indi-
viduals. The higher expressions of cytokines are indicative of
uninterrupted neuroinflammation that is accountable for
promoting HAND-associated encephalopathy [60]. Recently,
Vera et al. [61] reported the presence of neuroinflammatory
markers in neuro-asymptomatic HIV-infected patients,
despite the effective control of viraemia. The translocation
of the virus from the gut to the bloodstream is believed
to cause extensive inflammation and altered integrity of
white matter, and this reasonably suggests the role of the
brain–gut axis in the pathogenesis of HAND [62].
4. Detailed mechanisms of
neuroinflammation caused by HIV
in the brain

HIV is known to play a key role in depleting cluster of
differentiation 4 (CD4) cells, and robustly hampering the
immune responses. Subsequently, it may rise to opportunistic
infections and cause acquired immunodeficiency syndrome



Table 2. The roles of HIV regulatory proteins on neuronal damage.

HIV regulatory
protein pathological implications on brain references

Tat induces the expression of GAC, GFAP, IL-1β and MCP-1/CCL2 [78–81]

regulates cellular gene expression [82]

enhances the expression of GLUT1 in the hippocampus and cortex; also, enhances leucocyte infiltration [78,82]

upregulates the expression of Cx43 human gene [83]

decreases SYN expression; also reduces GABA in the cortex. [82,84]

interacts with CDK9 and Cyclin T1 [85]

Gp120 activates the release of inflammatory cytokines and toxic substances and accumulation of AβPP [86,87]

decreases the expression of MAP2, LC3 and beclin-1 [88]

Vpr promotes pro-apoptotic and cell-cycle proteins [57]

induces the release of matrix metalloproteinases (neurotoxins) [57]

provokes the release of IL-1β, TNF-α and IL-8 in macrophages [57]

Nef enhances the apoptosis of MVEC; also, enhances the sensitivity of astrocytes to H2O2 [55,89]

provokes astrogliosis and astroglial activation [90]
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(AIDS). HIV is occasionally known as a neurotropic virus,
although lacking expression of its main receptor CD4 in neur-
ons; it cannot directly damage the neuronal tissues [63].
Nevertheless, recent phylogenetic analyses showed that
HIV could easily access the CNS during primary infection
(within the first two weeks), where it can replicate locally
and get compartmentalized [64]. Thereafter, virus replication
leads to neurotoxicity that is correlated with impaired sen-
sory, cognitive and motor function in patients suffering
from HIV, and these neuronal abnormalities are collecti-
vely termed HAND [11–14]. These conditions are further
categorized into three groups, based on the severity of the
symptoms, namely, HIV-associated dementia (HAD), mild
neurocognitive disorder (MND) and asymptomatic neuro-
cognitive impairment (ANI) [15]. Patients suffering from
these complications exhibit an array of clinical symptoms
which may range from cognitive and motor impairment
to altered mood and behavioural changes to dementia. The
asymptomatic, ANI-HIV+ patients have been reported to
display greater risk to develop cognitive dysfunctions in
comparison with normal patients, and these are considered
to reflect the primary stages of AD [65,66]. The incidences
of HAND have been found to reduce with the successful
establishment of combination antiretroviral therapy (cART)
[12,67]. However, despite the availability of cART, the occur-
rence of HAND is drastically increasing nowadays, generally
due to cardiovascular risk factors, increased life expectancy of
patients, exposure to environmental hazards and neuroin-
flammatory changes. Recently, it has been reported that
patients diagnosed with HAND with mild/ severe cognitive
loss suffer from low quality of life, along with relatively
shorter lifespan [68]. Before the introduction of cART, HAD
was reported in 15–20% of HIV+ patients and was considered
a focal risk factor [69,70]. However, following the establishment
of this therapy, the total fraction of HAND patients did not
show any discrepancy, but the distribution of the classes
show alteration with an increase in MND and ANI and a
decrease in HAD [12]. Evidence from recent studies shows
that neuronal manifestations are becoming more common in
the ageing HIV+ population [14,71,72]. The data from many
clinical trials show poor prediction on the influence of cART
on cognitive dysfunction due to BBB restricted lower pen-
etration of the drugs into the CNS. Additionally, some ARV
medicines can cause neurotoxicity and are believed to be
linked with a poor prediction on the influence of cART on cog-
nitive impairment. Given the available scenario, HAD is also
considered as one of the most common forms of dementia in
people of less than 40 years of age [14,71,72].

As described previously, HIV uses a mechanism called a
‘Trojan horse’ to enter the CNS, and this mechanism consists
of the passage of infected monocytes through the BBB
(figure 1) [5,73]. Recently, it has been shown in several clinical
studies that CD14+CD16+ monocytes are competent to easily
transmigrate through the BBB, and their high numbers are
also reported in HIV-infected patients [5,73]. HIV, once it
enters the brain, can damage many cell types, including peri-
vascular macrophages, microglia and potentially adult neural
precursors due to the presence of CD4 receptor on these cells
[74,75]. Moreover, HIV replication can also be seen in astro-
cytes in a restrictive manner [76]. Due to these reasons, the
brain is sometimes classified as a sanctuary and may serve
as a reservoir for HIV [77]. The direct and indirect influences
of HIV infection in the brain cause astrocytes and microglia-
induced release of cytokines, chemokines and free radicals
that result in neuronal dysfunction [12]. In addition, BBB dis-
ruption caused by HIV also contributes to further entry/exit
of viral proteins and virions.

Numerous HIV regulatory proteins including Tat, Gp120,
Vpr and Nef can have direct influences on the nervous
system, and these viral proteins are accountable for triggering
neuroinflammatory pathways that cause neuronal dysfunc-
tion (table 2 and figure 2). The main source of these viral
proteins can be infected non-neuronal cells, although these
also shed from virions [91,92]. Some viral proteins such as
Vpr and Tat are consistently found in the cerebrospinal
fluid (CSF) [91,93,94]. Further, the envelope protein Gp120



Tat

Vpr

IL-1b, GFAP, GAC,
MCP-1/CCL2

leukocyte infiltration

GLUT1 expression
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expression
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Figure 2. The scheme shows pathological implications of HIV regulatory proteins in neuronal damage. MVEC, microvascular endothelial cells; SYN, synaptophysin;
GABA, gamma-aminobutyric acid; GLUT-1, glucose transporter-1.
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has been demonstrated to trigger the release of TNF-α and IL-
1β, as well as glutamate, which elicits neuronal apoptosis, as
evidenced by numerous ex vivo and in vivo studies [95,96].
Similarly, Tat has been found to potentiate glutamate overac-
tivation of N-methyl-D-aspartate receptor (NMDA) receptors
and release of cytokines from astrocytes, and potentiate neur-
onal apoptosis as well [97–99]. Interestingly, Tat and Gp120-
induced apoptosis also accounts for higher Ca2+ levels
when coupled with excitotoxicity events and activated by
glutamate deposition in the extracellular spaces. Patients suf-
fering from HIV often have increased levels of glutamate in
the CSF, and this correlates well with both the extent of
brain atrophy and severity of dementia [100]. Similar to Tat
and Gp120, the protein Nef can also trigger cytotoxic effects,
though the exact mechanism played by this protein is yet to
be investigated [101].

Furthermore, by regulating microtubule stability, the Vpr
induced aggregation of neuronal mitochondria and disrupted
axonal transport [102]. In the meantime, it is considered
that if the viral load is not checked, there will be a high prob-
ability of neuronal dysfunction. Interestingly, HIV-associated
neurodegeneration cannot be correlated fully with cognit-
ive deficits, as observed during the early phases of AD
[103,104]. In recent studies, cognitive impairments in HAD
patients had demonstrated a better correlation with synaptic
dysfunction than neurodegeneration, which is further
accompanied by synaptic loss, degeneration of axons and
astrocytosis [105,106]. More studies are required to demon-
strate whether neurocognitive deficits are still observed in
patients even when the viral load is well under control.
Some cohorts demonstrated that in HIV+ viraemic subjects,
there is still a high occurrence of HAND, while others
suggested that cognition is usually not impaired in individ-
uals with no detectable viraemia [66,107,108]. This can
possibly be explained by some possible mechanisms includ-
ing (i) toxicity of ARVs, (ii) neuroinflammation, (iii) lack of
proper cART penetration across the BBB, (iv) increased
longevity of infected people and (v) restricted low-noise
viral replication [109,110]. Further, constant orchestrated
inflammatory events may open up the possibility to under-
stand the linkage between HIV and AD-associated
neurodegenerative conditions.
5. Mechanisms linking HIV-derived
neuronal damage in the AD brain

With the introduction of cART, AIDS has become a chronic
disease. A substantial number of HIV+ patients over 50–55
years of age are prone to age-related diseases [111]. The pla-
ques formed by extracellular Aβ peptide deposits have been
reported in patients, specifically before the cART era.
Additionally, accelerated ageing such as immunosenescence
is considered an integral part of the natural history of HIV
infection. Specifically, HAND makes an impact on an already
age-compromised organ and facilitates the occurring rate of
neurodegenerative conditions. With reference to AD, concerns
have been raised on the potential ties between HIV-CNS
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infection through various findings highlighting the modu-
lation of amyloid and Tau pathways. Many symptoms
correlated with AD pathomechanisms were observed in
HIV+ individuals. Moreover, similar observations reported
in the preclinical models represent neuro-AIDS and mimic
neuronal dysfunction in HIV (table 3) [112–133]. It has been
reported that CSF features of HIV+ patients, present in
HAND, resemble the sign and symptoms akin to the early
and late stages of AD. For instance, Aβ1–42 levels were found
considerably altered in the CSF of HAND patients [134]. How-
ever, when comparing CSF with HAND, late-stage AD and
age-matched controls, reduced Aβ1–42 levels were observed
in HIV+ individuals suffering from neuronal complications
[134]. In particular, HIV+ patients without neurological mani-
festationsmay have a similar range of Aβ1–42 levels as reported
in non-dementia controls.

Mounting evidence indicates that HIV protein/particle
exposure to the brain directly or indirectly influences the regu-
lation of amyloid and Tau signalling pathways [113,135–137].
Recently, neurodegeneration has been noted inmurinemodels
of HIV (Gp120 transgenic mice and HIV-1 transgenic rats).
It demonstrates increases in oxidative stress, gliosis, apoptosis,
abnormal Aβ formation and phosphorylation of Tau. Further,
the viral proteins like Tat affect Aβ synthesis, involving
numerous mechanisms, including an increase in Aβ synthesis
by deregulating structure and function of endolysosomes
[135]. Similar to Tat, recombinant Gp120 injected primary
hippocampal cells have demonstrated the promotion of
Aβ1–42 secretion [138]. Also, Tat derived from a lentiviral
vector exhibited expression in the hippocampus of transgenic
mice (AβPP/PS1) and demonstrated an increase in Aβ1–42 for-
mation along with a rise in the volume of amyloid plaques
[124]. On the other hand, it causes a rise in Aβ aggregation
by inhibiting its mediating degradation enzyme, Neprilysin.
Moreover, it also enhances BACE1 expression and synthesis
of the C99 fragment to accelerate the production of Aβ
[113,135,139]. The increased expressions of BACE1
(commonly observed with AD) have been reported in HIV+

patients [140].
Recently, it has been reported that Tat protein in primary

hippocampal neuronal cultures forms complexes with toxic
Aβ peptides and potentiates a damaging effect by the for-
mation of pores in the membrane [140]. In HIV-1 transgenic
rats, the number and volume of amyloid plaques have been
reported to be considerably elevated in the cerebral cortex
due to an increase in amyloid C-terminal fragment C99
levels (greater than 5-fold) in the brain of HIV-1 transgenic
rats [113]. Likewise, HIV-1 infected cells released p17 (HIV-
1 matrix protein) which showed participation in Aβ-induced
neuronal toxicity ascribed to misfolding and aggregation
even when protease inhibitors (PI) are used [141]. When
p17 was injected into the mouse hippocampus, it was
observed to colocalize with plaques, phosphorylated Tau
and fibril-like structures. In the same study, p17 was further
demonstrated to be associated with increased Aβ production
and impairment of cognitive function in experimental tests
[141]. Recently, the regulatory effect of Gag polyprotein on
AβPP metabolism has been demonstrated in macrophages
and microglia. The Gag enhances Aβ load and associated
neurotoxicity by triggering the activity of secretases. AβPP,
on the other hand, mediates antiviral actions by sequestering
Gag polyprotein in lipid rafts and limiting the release of HIV-
1 [142]. To understand the balance between these two
mechanisms (envision and restriction), and the impact on
toxic Aβ peptide production, further studies are warranted.

The role of Tau protein in HAND pathogenesis is yet
to be understood well. However, cognitive abnormalities
accompanied by neuronal death and gliosis as a result of Tau
hyperphosphorylation have been reported in transgenic mice
(10-month-old Gp120 transgenic mice) [112]. Over-activation
of glycogen synthase kinase 3β (GSK-3β) is believed to play
a key role in such impairment as it is the main enzyme
involved in Tau phosphorylation. Similarly, higher expression
of cyclin-dependent kinase 5 (Cdk5), another important
enzyme involved in Tau phosphorylation, has also been
shown in HIV-1 transgenic rats along with raised levels of
pTau (p-Thr181, p-Thr231 and p-Ser396), particularly in the
hippocampal components [113]. Observations of experimental
models therefore demonstrate the linkage between raised pTau
and irregular NFTs in HIV+ patients with HAND [20,112,120].
6. Correlation between BBB, HIV and AD
pathogenesis

BBB dysfunction is often associated with the pathogenesis of
various neurodegenerative conditions, including HAND
[143,144]. In AD, the micro-vessel disruption has been
shown to be consistent with disease onset and progression
[145–147]. The occurrence of impaired BBB is shown to be
associated with Aβ aggregation in several animal models as
well as in patients suffering from AD [148–150]. The BBB
impairment arising from HIV-1 infection is probably accoun-
table for the transmission of the virions from the vascular
compartments. Additionally, it also proved to boost recruit-
ment of immune cells and facilitates CNS infection by many
opportunistic microbes [131,143,144]. The interaction between
BBB and HIV-1 may occur in the neurovascular unit (NVU)
cells by engaging viral proteins. Some studies have shown
that by dysregulating gap junctions, HIV-infected astrocytes
can damage BBB integrity and impair brain homeostasis
[76]. Numerous viral proteins, including Tat, Gp120, Vpr
and Nef, have been found to be associated with deregulated
molecular and cellular pathways, and impairing the repair
mechanisms, leading to BBB dysfunction [5]. The direct
regulatory effect of Tat protein on endothelium has also been
shown through multiple cellular routes, such as inhibition
of the Ras pathways, culminating in reduced tight junction
(TJ) protein expression and BBB dysfunction [151–153].
These effects, mainly triggered by toxic Aβ accumulation in
the brain, highlight a direct involvement of HIV proteins
in Aβ–BBB interaction. Most importantly, Tat also regulates
the expression of various Aβ associated receptors and trans-
porters, which are engaged in the bidirectional movement
of peptides across BBB. Recently, it has been shown that
extracellular Tat induces receptor for advanced glycation
endproducts (RAGE) activity and results in the activation of
Ras/MAPK signalling cascade and agglomeration of Aβ
[7,152]. In addition, it also reduces the clearance of Aβ across
the endothelial cells and inhibits the synthesis of low-density
lipoprotein receptor-related protein-1 (LRP-1) [152]. Similar
to Tat, Gp120 has shown to alter BBB dynamics by regulating
protein kinase C (PKC) and JAK/STAT signalling. Gp120 also
increases monocyte migration, through which it enhances the
number of HIV-infected monocytes that can cross the BBB to
enter the CNS [5,154,155]. On the contrary, recombinant
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Gp120 administration showed injury in CNS micro-vessels
that reveal that Gp120 may directly alter the function of
endothelial cells in the brain and influence BBB dynamics
[156]. These mechanisms ultimately lead to the diminished
clearance of Aβ from the interstitial fluid and thus culminate
in Aβ deposition, as well as accumulation in the brain.
In this context, it is imperative to reasonably speculate and
articulate the intriguing role of the BBB in AD and HAND
pathogenesis [150].
/journal/rsob
Open

Biol.10:200286
7. Pathological hallmarks of AD: possible
role of HIV

7.1. Amyloid beta (Aβ)
Atypical Aβ build-up is an important trait of AD reported in
HIV-infected individuals [120,123]. Abnormalities associated
with Aβ burden are more frequent in the AD brain than HIV,
predominantly in the younger HIV-infected individuals.
Ageing is considered as a potential risk for Aβ aggregation
in HIV-infected individuals, although recent studies advocate
that HIV and ageing both can influence Aβ aggregation inde-
pendently, as well as together [136]. It has been shown that in
HIV-infected individuals, the plaques are typically dispersed,
and accumulation of Aβ generally occurs in brain somas and
extracellular plaques as well as axonal tracks [120,123,157].
However, in AD, the plaques are of neurotic occurrence,
predominantly in the extracellular spaces [158]. Some neuro-
pathological findings demonstrate that Aβ aggregates in HIV
cases preferentially in the basal ganglia, frontal lobe and hip-
pocampus [123,159]. Though the site of Aβ deposition may
show a discrepancy in AD brain, it usually tends to arise pri-
marily in neocortical areas [158]. There are numerous studies
that highlight the connection between long-term cART usage
and aggregation of Aβ [123,159]. Accumulated Aβ may also
exist without cognitive impairments in older adults; however,
it is widespread and ubiquitous in the AD brain, and it is not
a central feature of normal cognitive ageing [160]. The Aβ
accumulation develops gradually with reduced neurotoxicity
in similar brain areas with healthy ageing as in AD [161].
Though Aβ is strongly linked with AD, substantial evidence
is still limited in context to HAND, where Aβ assists as a
driving force.

7.2. Hyperphosphorylated Tau (pTau)
Tau is a microtubule-associated protein (MAP) that is
accountable for maintaining a normal neuronal network.
Hyperphosphorylation of Tau leads to its dissociation from
microtubules and the dissociated tau forms paired helical fila-
ments (PHFs) that eventually aggregate and generate NFTs.
NFTs consisting of pTau are another characteristic trait of
AD, specifically in people suffering from HIV [3,162,163].
The elevated level of Tau has been reported to occur at
earlier ages in individuals suffering from HIV than in healthy
individuals [20]. Even though pTau contents were found to
be irrelevant to the viral levels in the brain, but pTau is often
correlated with the activation of microglia [21]. In HIV cases,
tau phosphorylation may be initiated by viral proteins as
well as pro-inflammatory cytokines that cause amyloidosis
and precede the growth of tau tangles [11]. Higher expression
of pTau has also been shown to be correlated with ARV
treatment [20]. It has been observed that relative to HIV,
pTau usually forms in the entorhinal cortex and hippocampus,
and later expands to adjacent areas, which represents the
phenomenon observedduringnatural ageing andAD [20,164].

7.3. BBB impairment
The BBB is a biochemical barrier that helps in protecting
CNS from potentially damaging substances, including neuro-
toxins and drugs. It also protects the neural tissues from
variations in blood composition and neurotoxins [162]. The
permeability of the BBB is altered in HIV infection, which
permits effusion or leakage of toxic elements, such as
infected macrophages from blood to the brain parenchyma.
HIV has been reported to influence neuronal endocytosis,
which further serves as a key player in impairing the integrity
of BBB associated microvascular endothelial cells [165].
Further, upregulation of adhesion molecules and HIV-induced
damage of the tight cell junctions facilitate BBBpassage [6]. The
disrupted BBB has also been correlated with toxic Aβ aggrega-
tion in HIV-infected individuals as other abnormalities arise
from functional failure to sort out the Aβ peptides [7]. The
increased intracellular Aβ agglomeration in microvascular
endothelial cells has also been shown during HIV infection in
an in vitro study [166]. The disrupted BBB, which is linked
with AD pathogenesis, serves both as a reason and mediator
of cerebral Aβ deposition affecting BBB permeability and Aβ
agglomeration involving a common pathophysiological
mechanism in AD and HIV cases [7,167].

7.4. CSF markers
The phosphorylated Tau and Aβ concentrations in CSF also
correspond with their levels in the brain, though for toxic Aβ
an opposite correlation exists, indicating a problem that is
associated with its Aβ clearance. The higher expression of
pTau and reduced Aβ level have been reported in the CSF of
individuals suffering from symptomatic HIV, representing
the phenomenon observed in AD. However, this finding
lacks consistency principally for total Tau and pTau
[120,168]. In a study, reduced CSF Aβ, but not accelerated
pTau, was observed in an individual suffering with HAND
[169]. Conversely, accelerated CSF pTau was also noted in
asymptomatic HIV patients as compared to the normal
controls [170]. Further, this finding also indicates raised
levels of CSF pTau in HIV-infected older people suffering
from HAND. In view of this finding, it is seen that similarities
exist between HIV+ individuals and AD brain with reference
to CSF Aβ and Tau, although larger disturbances have
been observed consistently during AD in older people, pre-
dominantly in comparison with young adults manifesting
neuro-asymptomatic HIV.
8. Risk factors and pathophysiological
mechanisms of AD induced by HIV

8.1. Genetic predisposition
The apolipoproteins, in particular ε4 allele of apolipoprotein-E
(ApoEε4), is known to be one of the major risk factors for
AD, which is correlated with elevated Aβ agglomeration,
diminished neurocognitive activity, decreased brain volumes
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and enhanced systemic progression ofHIV infection [171–173].
ApoEε4 susceptibility to HIV infection has been shown to be
enhanced in vitro [173]. The greater expression of ApoEε4
was shown to be correlated with decreased cognition in HIV
cases when compared with age-matched seronegative
ApoEε4+ individuals, though many studies did not find a
meaningful correlation between ApoEε4 and HAND
[172,174]. Another isoform, ApoEμ4, has been shown to dis-
play a more stable association with cognitive functioning in
AD than in HIV cases, as evidenced by the fact that carriers
with two alleles may have up to 85–90% probability of devel-
oping AD by the age of 80. Many risk factors associated with
developing AD have also been reported with the ApoEε4
risk alleles [171]. Although HIV may influence neurological
structure and function, aggravated by pre-existing genetic fac-
tors, and then eventually lead to neurodegeneration or
cognitive dysfunction following epigenetic changes [175].

8.2. Cerebral metabolism
Emerging evidence shows that HIV infection in individuals
causes disturbances in cerebral metabolism, which signifi-
cantly contributes to the development of brain defects and
progression of neurocognitive deficit [6,176,177]. In HIV
infection, there is mitochondrial dysfunction followed by oxi-
dative stress via overproduction of reactive oxygen species
(ROS), the release of neuroinflammatory markers, neuroim-
mune dysfunction, susceptibility to drug toxicities and
development of HAND [6,177,178]. ROS is considered as
the main cause of brain ageing due to oxidative changes as
well as cellular damage that affects the aged brain along
with impaired insulin signalling [179,180]. Further, glutamate
overproduction, enhanced neuroinflammation and Ca2+ over-
load is associated with mitochondrial dysfunction, and all
these contribute to the neurotoxicity [181]. Likewise, pertur-
bations in brain mitochondrial activity, oxygen utilization
capacity and carbohydrate metabolism have also been
implicated in AD [182,183]. Additionally, the occurrence of
oxidative stress at an early stage of AD promotes and
facilitates the formation of Aβ-plaques and tau tangles [182].

8.3. Neuroinflammation
The dispersal of HIV takes place between infected monocytes
to uninfected cerebral microglia and astrocytes, where it
activates inflammatory immune responses by releasing
cytokines, chemokines and ROS. Chronic and sustained neu-
roinflammation caused by prolonged glial and astrocyte
activation has been reported to culminate in neuronal death
and exhibit correlation with brain defects associated with
HIV infections [6,177,178]. The positron emission tomo-
graphy (PET) results have also shown functional changes
due to regional microglial activation, consistent with autopsy
findings that demonstrate frontal cortical aggregation of
oxidative damage of macromolecules initiated by ROS in
AIDS patients [184,185]. Enhanced glial expression has been
observed in asymptomatic neuro cases of HIV with substan-
tial activation of frontal and parietal components among
people with HAD. This demonstrates that excessive glial
activation and neuroinflammation attribute to cognitive
impairment [186]. PET results also indicated that the
systemic stimulation of microglia occurs in AD, often in con-
junction with cognitive impairment [187]. Aβ aggregation also
contributes to astrocyte activation aswell as the onset of inflam-
matory reactions and related immunological responses. In
addition to Aβ accumulation, NFTs induced neuronal degener-
ation also provokes neuroinflammation [167].

8.4. Neurotoxicity
An orchestrated reaction of excitotoxicity and apoptosis,
which maintains immunological and inflammatory responses
to the virus is potentially accountable for HIV-related brain
dysfunction [6,177,180]. It has been found that depletion of
T-cells and apoptosis are influenced directly by HIV gene
expression, whereas indirectly by apoptosis in the uninfected
cells. Tat, Gp120 and complementary proteins (such as Fas)
are among the substances that have been implicated in
HIV-associated neurotoxicity. Tat and Gp120 disrupt the
uptake of glutamate by astrocytes, leading to glutamate exci-
totoxicity and trigger neuroinflammation and apoptosis.
Further, they also result in Ca2+ accumulation and have neu-
rotoxic effects of a related kind. Moreover, Tat can promote
astrocytosis and neuronal death and associate with AβPP to
enhance Aβ production [124]. Most importantly, viral struc-
tures and regulatory proteins also contribute to cerebral
mitochondrial damage and BBB dysfunction following
overproduction of ROS that causes oxidative injury [178,188].

Neurotoxicity may also result from numerous ARV drugs
used to treat HIV cases, such as nucleoside analogue reverse
transcriptase inhibitors. Some ARV drugs that penetrate the
BBB and enter the brain efficiently than others possess
more potential to cope with HIV-associated brain dysfunc-
tion [189]. In recent trials, cART-treated HIV patients
exhibited a higher concentration of cerebral Aβ as well as
pTau than cART-naive patients [20,123]. There have been
contradictory results, but it seems unlikely that cART tends
to be the major reason for brain dysfunction in most cases
[169,190]. Nevertheless, further studies are required on
cART-related neurotoxicity; specifically provided ongoing
usage of cART in people of old age suffering from HIV and
the probability of emergence of many medications which
are under the different stages of clinical development. The
inflammation and infection of other organ systems outside
of the brain, including liver, gut and vascular systems may
also represent indirect neurotoxicity. For instance, HIV
causes leaky gut syndrome by damaging and impairing the
permeability of the intestinal lining, allowing microbes and
toxins to enter the blood and reach systemic circulation,
which eventually causes neuroinflammation [191]. Further,
in response to HIV, hepatic ceramides were correlated with
various components of the metabolic syndrome, apoptosis
and neurodegeneration [192].

8.5. Vascular and metabolic comorbidities
Numerous comorbidities like chronic substance abuse, often
independent of the direct consequences of HIV, lead to HIV
transmission, responsiveness and cognitive difficulties [22].
HCV also aggravates HIV-associated neurocognitive damage
following similar mechanisms [193,194]. Further, vascular
and metabolic conditions such as metabolic syndrome, dia-
betes mellitus, vascular injury and obesity are in parallel rise
with chronically HIV-infected people age, and there are indi-
cations that HIV permits them to improve and flourish
[195,196]. These conditions can also have an adverse effect
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on neurocognitive function [197,198]. For instance, impaired
glucose metabolism which results in hyperglycaemia and
hyperinsulinaemia provokes ROS production, tau hyperpho-
sphorylation, Aβ accumulation and brain microangiopathy,
and altogether these contribute towards a reduction in Aβ
degradation and clearance [197]. Hence, vascular, neurological
dysfunction may be a significant component of HAND caused
by HIV, along with the development of vascular comorbid-
ities. However, it is still challenging to identify the specific
effect of vascular cognitive dysfunction to HAND. It should
also be underlined that vascular risk factors are strongly domi-
nant in aged individuals and there is a strong indication that
these risk factors can be correlated with vascular, neurological
impairment, even though there are no distinct cerebrovascular
events [199]. Further, the epidemiological studies also suggest
that these conditions raise the possibility of progression of AD
and increase vascular risk in both HIV and AD individuals,
and are correlated with higher Aβ burden [198,200–202].
Additionally, the flexible complexity of vascular and meta-
bolic risk factors may essentially represent therapeutic
targets in order to prevent or curtail cognitive impairments
in HIV-infected individuals.
9. Possible mechanisms linking HAND,
synaptic degeneration and AD

As described previously, HIV-1 infection of the CNS initiates
from the transmigration of HIV-1-infected peripheral blood
monocytic cells/macrophages across the BBB. Subsequently,
microglia and astrocytes become infected and reactivated.
The immune-activated and HIV-1-infected microglia/macro-
phages release viral proteins (e.g. gp120, Tat, Nef and Vpr),
chemokines (e.g. MCP1, CXCL12), cytokines (e.g. IL-1β,
TNF-α, IL-6) and other neurotoxic factors. In addition,
infected/reactivated astrocytes can also release neurotoxic
substances and pathogenically increase synaptic activity with
increased transmitter release and impaired glutamate re-
uptake. The released neurotoxins and extracellular glutamate
can cause excessive Ca2+ influx, perturbations of energy
metabolism and ROS production, leading to the disruption
of normal neuronal function. Most importantly, the released
viral proteins, cytokines, chemokines and free radicals can trig-
germore glial cells andmacrophages. These damaged neurons
may mark the abnormal synapses with some kind of ‘eat-me’
signals, which can be recognized and eliminated by microglia
and/or astrocytes through phagocytotic pathways such as the
MerTK, Megf10 and APOE pathway in astrocytes and
the complementary and FKN/CX3CR1pathways inmicroglia.
Further, all these mechanisms can contribute to AD-like
characteristics, including Tau phosphorylation, Aβ produc-
tion, oxidative stress and excitotoxicity, and also influence
neuron integrity and CNS homeostasis. It is also observed
that HIV+ patients present high glucocorticoid (cortisol)
levels, characteristic of a hypothalamic–pituitary–adrenal
(HPA) axis deregulation.Glucocorticoids (GC) and their recep-
tors are highly engaged in the etiology of AD. Further, GC
and their receptors may modulate/potentiate the develop-
ment of HAND and potentially AD. The dysregulation of the
HPA axis is observed both in HIV+ individuals and rodent
models. GC overexposure, along with viral proteins or not, is
able to induce the enhancement of Tau phosphorylation, Aβ
production, oxidative stress, excitotoxicity, neuroinflammation
and apoptosis. Through these numerous pathways, HIV-1
causes synaptic deficits and neurodegeneration, thus leading
to cognitive impairment and behavioural deficits, and could
also explain the establishment of HAND in HIV+ patients,
and potentially the onset of AD. All these processes lead to
neurodegeneration and synaptic deficits/degeneration, and
are potentially responsible for cognitive decline observed in
HAND patients, all of which could progressively favour the
development of AD (figure 3) [203,204].
10. Therapeutics strategies to combat HIV-
mediated neuronal damage

In the above sections, we comprehensively discussed various
underlying interconnected mechanisms between HIV,
neuroinflammation, HAND and AD. Understanding the
underlying mechanisms will help explore various possible
therapeutic strategies and agents, which may be able to
combat these complications. Unfortunately, there are no medi-
cations identified so far, and very few studies are available on
therapeutic aspects. Neuroprotective therapies are designed
with a targeted approach to ameliorate damage and improve
survival as well as the function of neurons. The mechanisms
associated with neuroprotection are classically aimed to
diminish the extent of neuronal damage in HIV-1-induced
neuronal dysfunction. It can be considered that agents that
regulate inflammatory and/or cell death pathways and
favourably modulate neurotransmitter function may provide
opportunities for pharmacological manipulation during
HIV-1 brain infections, although previous studies which
focused on anti-inflammatory mechanisms have not demon-
strated promising results in attenuating endogenous
inflammation and considerable neuroprotection. As a result,
a number of studies have recently been conducted to reduce
neurotoxicity by blocking or modulating the actions of viral
proteins, augmenting the protective action of neurotrophins
and growth factors, or curtailing neuroinflammation triggered
by HIV-1-infected microglia and macrophages (figure 4). For
instance, the neuroprotective role of brain-derived neuro-
trophic factor (BDNF) has recently been observed in HIV-1-
mediated neurotoxicity. It appears a potent neurotrophic
agent for HIV-1 associated neuronal injury, which confers neu-
roprotection via inhibiting caspase-3 activation and HIV-1
Gp120 mediated neuronal apoptosis [205]. Moreover, BDNF
is also found to reduce the levels of CXC chemokine receptor-
4 (CXCR4) and inhibit neuronal apoptosis by blocking the
neurotoxic effects of SDF-1α, a ligand for CXCR4. The SDF-
1-mediated apoptosis is quantitatively akin to that provoked
by Gp120. CXCR4 activation can contribute to the cell death
of a different kind of neuronal population. Consequently,
BDNF-mediated neuroprotection occurs by reducing CXCR4
level that ultimately leads to the reduced activation of this
receptor during HIV-1 neuropathogenesis [205]. Recently,
activation of nuclear factor kappa beta (NF-κβ) mediating
nerve growth factor (NGF) and BDNF and rise in Bcl-2
expression has also been reported to promote neuronal
survival in HIV-1 associated neurodegeneration [206,207].
Additionally, BDNF has also been reported to prevent gluta-
mate-induced excitotoxicity through modulation of NMDA
receptors in HIV-1 patients [208]. Similarly, erythropoetin
(Epo), a neurotrophin, can also confer neuroprotection against
HIV [209]. A higher dose of Epo for a long duration showed
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Figure 3. Schematic showing possible linkage between HAND, synaptic degeneration and AD.
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better neuroprotective effect against HIV-1 transmission from
mother to infant [210]. It can also protect cortical neurons
against apoptosis by targeting HIV-1 Gp120 [211]. These
observations suggest that Epo can be considered as a potential
therapeutic agent for the treatment of HAD [212]. Recently, the
promising role of recombinant human NGF (rhNGF) has
shown to improve the symptoms associated with both HIV-
related neuropathy and diabetic polyneuropathy. Substantial
evidence demonstrates that NGF signalling may also prevent
glutamate-induced neurotoxicity caused by ischemic injury.
However, in HIV-1-induced neuronal damage, especially
in the peripheral nervous system, NGF may have significant
therapeutic effects [213–215]. Activation of the insulin-like
growth factor I (IGF-I) system is another potential approach
to treat HAD, as it exhibited neuroprotective action against
neurotoxins [216–218]. Activating IGF-I-stimulated signalling
componentsmayoffer a potential therapeutic approach to pro-
tect susceptible neurons in HAD patients. Earlier, impaired
IGF-I responses were reported during the course of HIV infec-
tion [216–218]. In HIV-infected patients, reduced levels of
serum IGF-I have been observed particularly in children fail-
ure to thrive and individuals displaying wasting syndrome
[216]. Reduction in the levels of IGF-I in CNS may aggravate
neuronal apoptosis in the course of HIV infection [218].
Thus, it can be reasonably argued that activation of the IGF-I
system or increased utilization of IGF-I-activated pathways
may signify a promising treatment approach to rescue neurons
susceptible or vulnerable to injury in HAD patients. Similarly,
higher expression of fibroblast growth factor I FGF-I can also
rescue the CNS from the neurotoxic effects of HIV. Altered
expression of FGF-I and GSK-3β in susceptible neurons can
be considered crucially important for the pathogenesis of
HAD and emergence of therapeutic strategies [219,220].

Furthermore, the Tat and Gp120 mediated neurotoxicity
can be fully blocked by memantine, an NMDA antagonist
used well in the treatment of dementia [221,222]. It also ame-
liorates hippocampal synaptic transmission in the SCID
mouse model of HIV-1-associated neurologic diseases [223].
Recently, the use of inhibitors of GSK-3β in the brain suggested
that regulation of GSK-3β activity in neurons may be vital for
neuroprotection. Higher expressions of GSK-3β induced apop-
tosis and showed association with HIV-1 protein-mediated
neurotoxicity [224,225]. As a consequence, pharmacological
agents like valproate and lithium identified to inhibit GSK-
3β activity could be valuable for therapeutic benefits in HAD
patients.

The neuroprotective role of monocyte chemoattractant
protein 1 (MCP-1) has recently been observed in HIV and
HAD patients [226,227]. Activated astrocytes-induced MCP-1
production positively influences neuroprotection through the
caspase-1 blockade. On the contrary,MCP-1 associated inflam-
matory reactions contribute to HIV-1-associated neurological
ailments [226,227]. MCP-1 can protect mixed cultures of
neurons and astrocytes from Tat or NMDA-induced apoptosis
by downregulating the extracellular glutamate expression,
along with modulating Tat and NMDAR1 expression [228].
In the case of HAD, MCP-1 may exert a protective as well as
a degenerative role as it is coupled with monocyte recruitment
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FGF responses were recorded during the course of HIV infection in several studies, therefore higher expression of these factors can also rescue the CNS from the
neurotoxic effects of HIV. The altered expression of FGF-I and GSK-3β in susceptible neurons are now regarded as crucial during HAD pathogenesis. Further, drugs
like memantine can be used to prevent neurotoxicity induced by Tat and gp120 viral proteins. Similarly, using inhibitors/drugs like valproate and lithium for GSK-3β
could have therapeutic importance in HAD patients, since higher expression of GSK-3β induces apoptosis and it has been found to be associated with HIV-1 protein-
mediated neurotoxicity. Finally, activated astrocytes-induced MCP-1 production positively influences neuroprotection through caspase-1 blockade. On the contrary,
MCP-1 associated inflammatory reaction contributes to HIV-1- associated neurological illness. MCP-1 can protect human mixed cultures of neurons and astrocytes
from Tat or NMDA-induced apoptosis by downregulating the extracellular glutamate expression, and in neurons by modulating Tat and NMDAR1 expression. These
strategies together can be helpful in preventing HIV-induced neuronal damage.
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and inflammation into the CNS [229]. The intricate balance
between neuroinflammation and neuroprotection could be
vital in triggering the initial as well as the ongoing response
of the CNS to injury. Taken together, potential approaches to
amplify the biologic effects of these factors or intensify their
expression may support an advantageous role against this
type of neurodegeneration.
11. Antiretroviral drugs: potential
therapeutic agent for the treatment of
HIV-induced neuronal damage

More recently, drugs used in highly active antiretroviral
therapy (HAART) have shown improvement in cognitive
functions, including all cognitive paradigms. The cognitive
improvement is also correlated with an increase in CD4
count with a concomitant reduction in viral load [230]. The
ability of ARV drugs to penetrate CNS supports the basis of
its therapeutic success, as is evident in various reports. In
order to reduce viral load, it is important that the drug
should achieve a high concentration in the CSF following its
ability to cross the BBB. Letendre et al. [231] examined the
CNS penetrability of ARV drugs and ranked the ARV drugs
for penetration based on scores assigned as 0 (low), 0.5 (inter-
mediate) or 1 (high). This ranking system was based on drug
concentrations in CSF, effectiveness in CNS and chemical
properties in the clinical studies. The calculation for CNS
penetration effectiveness (CPE) rank was determined by sum-
ming the individual penetration ranks for each ARV in the
regime. For instance, combinations of efavirenz, zidovudine
and lamivudine scored high for CPE [232]. Drugs like abacavir
displayed low CPE score and rank; this was correlated well
with higher viral load in the CSF [232]. Moreover, a small
study involving 37 individuals demonstrated greater cognitive
improvement with higher drug penetrability [233]. Similarly,
another study looked at both HIV patients with cognitive
impairment and patients with cognitive impairment without
HIV, and it showed a worsening of cognitive. The ARV
drugs with high penetrability can be neurotoxic too; thus,
it is advised to suspect ARV drug neurotoxicity when cogni-
tive improvement is not observed or detected with ARV
treatment [234].

In the last few decades, appreciable progress has been
made in the area of ARV therapy related to improved neuro-
logical clinical outcomes for HIV-1 patients. An immediate
first-line treatment regimen for all new diagnosed HIV-1
infected patients is recommended by international guidelines
for reducing the neurological complications associated with



Table 4. Class, name and CNS penetration of the antiretroviral drugs
[239,240].

class of drug name of the drug
CNS
penetration

protease inhibitor tipranavir low

fosamprenavir medium

atazanavir medium

saquinavir low

nelfinavir low

lopinavir medium

ritonavir low

darunavir medium

indinavir medium

amprenavir medium

nucleoside reverse

transcriptase inhibitor

tenofovir disoproxil

fumarate

low

abacavir medium

didanosine medium

emtricitabine medium

stavudine medium

lamivudine medium

zidovudine high

entry/fusion inhibitors maraviroc high

enfuvirtide low

non-nucleoside reverse

transcriptase inhibitor

etravirine low

delavirdine high

nevirapine high

efavirenz medium

integrase strand transfer

inhibitor

raltegravir medium

elvitegravir medium
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HIV-1infected patients [235,236]. Current ARV therapy is
highly efficient in controlling HIV-1; still, viral replication
can be found in the CSF among some patients. It has been
found that ARVs reach different areas of CSF with significant
variability due to the different expression profiles of cellular
drug transporters and the concentrations of few ARVs do
not the exceed inhibitory concentration for wild-type HIV
replication in CSF [237,238] (table 4). The main limitation to
achieve the HIV-1 eradication from the brain is the subopti-
mal concentrations of ARV within this site. Factors like
molecular weight, blood protein binding and lipophilicity
influence the concentration of drug in the brain tissue
[231,241–243]. For instance, while entry and integrase inhibi-
tors are able to reach the CNS, the nucleoside/nucleotide
reverse transcriptase inhibitors and non-nucleoside reverse
transcriptase inhibitors can only partially cross the BBB. Con-
versely, the majority of PIs are characterized by a medium/
low permeability to the BBB [5,239,244,245]. Furthermore,
some cellular transporters like P-gp, MRP4 and MRP5 have
the ability to reduce the intracellular concentration of ARV
drugs which ultimately favours both the emergence of
drug-resistant viruses and their productive infections to
other cells [46,56,240,246].

New strategies like the usage of a hypertonic solution of
urea or mannitol [48,49] are currently used to increase the con-
centrations of ARV within site. This deed can be achieved by
inhibiting the drug efflux transport, while nanoparticles and
cell-mediated nanoART may confer other key advantages,
such as improved blood half-life and bioavailability, precise
delivery and higher aqueous stability [231]. Different types
of nanoparticles that have been identified for improving the
concentration of ARV are listed below:
1. Lipid nanoparticles have the ability to easily cross the BBB
[247,248].

2. Polymeric nanoparticles are able to exploit the interaction
with low-density lipoproteins receptors on the surface of
endothelial cells [239,249].

3. Inorganic nanoparticles such as small size silica with the
addition of polyethylene glycol (PEG) [250].

4. Gold nanoparticles conjugated with cell-penetrating
peptides [251].
It has been recently reported that poly(dl-lactide-
co-glycolide) nanoparticles and other nanoparticles increase
the peak concentrations of lopinavir, ritonavir and efavirenz
(these drugs are characterized by a low penetration into
CNS) [239,252]. Recently, a CPE that depends on pharmaco-
kinetics’ features of various ARV drugs was proposed to
estimate the efficacy of ARV treatment in the CSF [238]. How-
ever, some contradictory results of this CPE on clinical
outcomes in HIV-1 infected patients have been reported in
some of the studies [169,232,234]. These observations reflect
that further studies are required to prescribe ARV therapy
and that the regimens characterized by high CPE scores
must be carefully chosen. It has been demonstrated that in
the presence of high CPE, there is an acceleration of neurologi-
cal disorders [253,254]. For instance, PIs are shown to induce
oxidative stress in neuronal cells, while the NNRTI efavirenz
caused toxicity in the cortical neuronal cultures of fetal rats
[253–255]. Still in vivo studies are needed to confirm the neuro-
toxicity profiles of these drugs for potential applications.

Further, various reports highlighted the use of psychiatric
medication for mood disorders like depression. Many sub-
types of antidepressants, including tricyclic antidepressants,
serotonin–norepinephrine re-uptake inhibitors and selective
serotonin re-uptake inhibitors, have been found useful in
providing moderate symptomatic relief [256,257]. Psychosti-
mulants may also be useful for apathy and fatigue [258].
Psychotic and manic symptoms are less reported in the case
of HIV+ individuals, though a small-scale study with psycho-
sis demonstrated a higher occurrence of extrapyramidal
symptoms [259]. Numerous drugs such as mood stabilizers
(like lithium) may have concurrent neurotoxic effects, and
carbamazepine may stimulate the same CYP enzyme system
which participates in themetabolism of ARVdrugs, and there-
fore may cause drug–drug interactions [260,261]. However, on
a pharmacological basis, many agents including memantine,
nimodipine, selegiline, pentoxifylline and peptide T can be
considered neuroprotective, although among these numerous
agents, only selegiline appears to exhibit potential benefits
[262].
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12. Conclusion
Based on the available literature, it can be concluded that HIV-
associated synaptic loss and aetiology of AD and HAND is an
interconnected and orchestrated consequence of numerous
neuropathogenic processes triggered by HIV-1. Interactions
between HIV-1 and the host cells are believed to play a vital
role in the pathogenesis of these abnormalities. Several viral
proteins (Tat, Gp120, Nef and Vpr), which are released from
infected cells in the nervous system, may impart induction
of synaptic injury and pathogenesis of AD. In addition,
these proteins are likely to act in conjunction and cause synap-
totoxicity when released from infected cells in the CNS.
Further, AD-associated numerous factors such as BBB regula-
tors, members of the stress-related pathways as well as the
amyloid and Tau pathways appear to augment amyloid pla-
ques deposition or NFT accumulation following HIV
neuroinfections. Additionally, the HPA axis dysregulation
also showed that when associatedwith HIV infection, it is con-
ducive of generating an environment where BBB disruption,
neuroinflammation, oxidative stress, excitotoxicity and Aβ
burden are exacerbated. This, combined with other factors
(environmental/genetic), may provide a new insight for
understanding the pathogenesis, diagnosis and therapeutics
of brain disorders including AD and HAND. The scenario
of replication-independent production of HIV-1 protein is
apparently counterintuitive, and the underlying molecular
mechanism is yet largely remained unexplored. It is therefore
imperative to explore more in this field. Considering the need
for therapeutics against HIV neuroinfection, unfortunately,
still, there is an urgent need for evidence-based medications
to be identified that would be able to combat these compli-
cations. Many studies have recently shown a reduction in
neurotoxicity viamodulating the actions of viral proteins, aug-
menting the protective action of neurotrophins and growth
factors, or curtailing neuroinflammation triggered by HIV-1-
infected microglia and macrophages. The mechanisms associ-
ated with neuroprotection are classically aimed to diminish
the extent of neuronal damage inHIV-1-induced synaptic dys-
function. Agents that regulate inflammatory and/or cell death
pathways and favourably modulate neurotransmitter
function may provide opportunities for pharmacological
manipulation during HIV-1 brain infections. Altogether, in
the near future, it could be of paramount significance to
explore the molecular mechanisms of HIV neuroinfection
and develop therapeutic strategies.
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